Tevatron Ionization Profile Monitor (IPM) Buffer Module 11 October 2010 Mark Bowden Richard Kwarciany # Introduction The IPM Buffer module receives data from the IPM QIE front end modules over fast serial optical links. The data is buffered and then read out through a standard 3.3 Volt PCI interface by a commercial PC. The difference in maximum input and output rates is approximately 10:1, so at least 10 seconds of data readout time are required for each second of data acquisition, or the data must be compressed/filtered. Additional time will be required for analysis, depending on the speed of the processor. IPM Buffer Block Diagram # **Implementation** The IPM system will use 16 optical links to supply data. Standard optical components are available in 12 channel increments, meaning that two IPM Buffer modules with one optical receiver each will be used. IPM Buffer PCI Card # PCI Interface The IPM Buffer uses the PLX PCI9656 interface. The PCI9656 runs at 64 bits/66MHz on the PCI side but is limited to 32 bit/66 MHz operation on the local bus. The maximum transfer rate is approximately 20 MBytes/sec, although it may be possible to run faster using two cards and transferring bursts of data in a "ping-pong" fashion. PLX PCI9656 Advantages of the standalone PCI interface are; - 1) it is active at power-up, and can be used to program the FPGA through PCI. - 2) it has been used in previous Fermilab designs, so the development software exists and has been exercised. PCI registers will be provided for configuration of the trigger, readout of the data, and diagnostic functions. In diagnostic mode, all of the main memory is accessible to the PCI host. ## **Memory** The IPM Buffer will hold two DDR SODIMM modules for a total of 0.5 GBytes of buffer memory. This represents approximately 0.4 seconds of continuous data. The memory is arranged in two banks, with a total bandwidth of 2 GBytes/sec. This should be sufficient to handle the peak input data rate (1.5 GBytes/sec for 8 channels). #### **FPGA** The FPGA chosen for the IPM buffer is the Xilinx XC2VP20. This device has substantial internal resources (20,000+ registers and 1.5 Mbits of memory), allowing formatting and filtering to be done on-board the Buffer module before data is transferred to the PC. Each input link is decoupled by a 64 bit wide FIFO and the data is transferred to external memory in blocks of 32 64-bit words (2 KBytes). #### **Deserializers** The deserializers are included in the FPGA and are capable of accepting data rates in the range of 600-3000 Mbps. They require a local reference clock with a frequency very near (+/- 100 ppm) the intended data rate for initial lock. Following the initial frequency lock, the deserializers will relock to the actual frequency of the incoming data. The local reference clock is provided by a crystal oscillator. For reliable link operation, the data transmitter should run at a rate slightly faster than the required data transfer rate. This will cause insertion of an occasional idle character in the data stream, which helps to maintain word alignment in the receiver. On command, the transmitter should also have the capability of sending a specific sync word (8B/10B comma character) for a period of at least 20 usec to establish receiver word synchronization. All transmitters connected to the same IPM Buffer should operate at the same data rate (+/- 100 ppm). # **Optical Links** The IPM data sources are assumed to use multimode (850 nm) optics. The transmitter connector type is not specified, since fanout cables are available in most common types. Optical Receiver(s) The receive end of the optical link uses the MTP/MPO style 12 channel connector. The receiver(s) are Infineon V23832R devices (second source Molex 86991). These receivers use a BGA array connector and are removable. MTP (12 channel) parallel fiber At the source end of the optical cable the 12 parallel fibers are split into individual fibers using either a short fanout adapter cable, or a fiber cassette. Parallel fiber fanout cable. # **Functional Description** Figure 1 #### Fiber Reciever Referring to Figure 1, the Fiber Receivers are actually one discrete component which convert the optical input to a CML differential signal. The Infineon V23832R device used is a 12 channel device. Eight of the 12 channels are used in this implementation. Channels 8 through 11 are not connected. #### **SERDES** Each CML input channel is deserialized by a SERDES device internal to the FPGA. The SERDES produces a 16-bit wide parallel data stream. #### **FIFO** A two-stage FIFO memory on each input channel allows decoupling of the link clocks from the FPGA's clock, and also formatting of the incoming data into 64-bit wide data frames. The FIFOs are large enough to allow the data from all 8 serial links to be synchronized to each other. Since data on the links is organized into frames, synchronization of the eight links with each other is accomplished by comparing the frame header information on the links. #### Trigger / Data Filter Configured through registers in the PCI interface, the Trigger / Data Filter block allows for selective acquisition of data from the front end electronics. Up to 318 samples per turn can be stored by populating the sample masks through PCI. For each bit set true in the mask, data at that sample will be forwarded to the Memory Controller block for storage in memory. Individual channels are enabled or disabled in the Channel Mask Register. All data is stored if Data Filtering is disabled. The Trigger / Data Filter block also controls triggering of data acquisition. The trigger logic is configured through PCI registers, and allows for saving a preset number of turns after an injection marker, or after a software data acquisition start command is issued. To acquire a preset number of turns, the number of turns is set in the N Turns register, then the N Turn Enable bit is set in the CSR register. #### Counters The Counters block contains the Proton sample counter, the Pbar sample counter, and the Turn counter. The Proton sample counter is a modulo-318 counter that is reset by the proton marker bit in the data header, and incremented on each sample. The Pbar sample counter is similar, but is reset by the pbar marker bit. The Turn counter is a 16-bit counter that is reset by the injection marker bit, and increments when the proton counter wraps to zero. The values of each of the three counters is added to the header information and stored with the data during data acquisition. #### Memory Controller The Memory Controller block provides for initialization and control of the DDR SDRAM memory that is external to the FPGA. The memory controller itself is internal to the FPGA. Write and Read requests are entertained from either the PCI interface, or from the Trigger / Data Filter blocks, depending on which mode the IPM Buffer is in. The mode is controlled via a bit in the CSR register. Two modes are defined. Acquisition Mode, and Readout Mode. When in Acquisition Mode, the Trigger / Data Filter block has exclusive access to the DDR SDRAM, and read attempts from PCI return DEADBEEF. Write attempts are ignored. When in Readout Mode, the PCI interface has exclusive access to the DDR SDRAM, and data from the input links is not stored. ## Main Memory The main memory is discrete from the FPGA, and consists of two 256 MByte DDR SDRAM SODIMM modules. Each module is treated as a separate bank by the Memory Controller block, but is accessed as one large bank via PCI. Main memory can be read or written via PCI when the IPM Buffer is in Readout Mode. Placing the module into Acquisition Mode allows data from the input links to be stored in Main Memory. #### PCI Interface The PCI interface is a dedicated PCI interface device that is discrete from the FPGA chip on the board. It supports 64-bit, 66 MHz PCI. ## Diagnostic Features Loopback Data Generator. Each input serial link is equipped with a pattern generator that can be configured to transmit a known data pattern into the serial input. When enabled data frames of the required format are generated with an incrementing pattern to allow for confidence testing of the high speed serial links. The data generator transmits the following pattern: #### Force Error Registers To facilitate error reporting software development, the IPM Buffer module can be programmed to generate false error conditions. These error conditions are reported in the Link Error registers. Each of the individual links can be programmed to generate one or all of the 10 link error conditions by setting the mask bits in the Link Force Error Register. ## Front End Diagnostic Mode To facilitate debugging of front end boards, the IPM Buffer can be put into Front End Diagnostic Mode. When in this mode, raw footer data from the lowest four channel front end boards is copied into the IPM Buffer memory frame in place of the data for the highest four channel front end boards. Front End Diagnostic Mode is enabled by setting the Front End Diagnostic Mode bit in CSR0. ## Input Data Optical Connector The Input Data Optical Connector accepts a 12-fiber ribbon with an MTP connector. Fibers are numbered 0-11 with fiber 0 being defined as the bottom fiber when facing the IPM Buffer card from the rear of the host PC. Only fibers 0 through 7 are used in the IPM Buffer Module. Fibers 8 through 11 are not used. The FONetworks 12-fiber breakout adapter breaks the fiber ribbon out into 12 individual fibers with LC type connectors. The individual fibers are color coded as follows. | Fiber Color | Fiber Number | |-------------|--------------| | Dark Blue | Fiber 0 | | Orange | Fiber 1 | | Green | Fiber 2 | | Brown | Fiber 3 | | Gray | Fiber 4 | | White | Fiber 5 | | Red | Fiber 6 | | Black | Fiber 7 | | Yellow | Fiber 8 | | Purple | Fiber 9 | | Pink | Fiber 10 | | Light Blue | Fiber 11 | ## Input Data Format Link data received from the font-end boards adheres to the
following encoding scheme: | | 3 3 2 2 | 2. 2. | 2. 2. | 2. 2 | 2. | 2. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2. | 1 | 0 | |-----------|-------------|-------|---------|------|------|------|------|---|-----|---|---|---|-----|---|---|-----|-----|-------|------|-----|---|---|------|----|------|---| | TX_EN/RX_ | QIE4 | QIE3 | | | QIE2 | | QIE1 | | QIE | |) | | | | | | | | | | | | | | | | | | Timing bits | mode | CAPI | | | QIE7 | 7 | | | | | Ç | IE6 | | | | | | Ç | IE: | 5 | | | (| DIE4 | ļ | | | QIE4 | | QIE: | 3 | | | | Q | IE2 | | | | | | Q | IE1 | | | | | | (| QIE(|) | | | | | Timing bits | mode | CAPI | | | QIE7 | 7 | | | | | Ç | IE6 | | | | | | Ç | IE: | 5 | | | | QIE4 | Ļ | | | OIE4 | | OIE: | 3 | | | | Q | IE2 | | | | | | Q | IE1 | | | | | | (| DIE |) | | | | | Timing bits | mode | CAPI | | | QIE: | 7 | | | | | Ç | IE6 | | | | | | Ç | IE: | 5 | | | (| QIE4 | ļ | | | | | Error b | its | | | | | | | | | | | | C | oun | ter (| data | ι | | | | | | | IPM Buffer accepts data in the format above only. Data frames consist of seven contiguous 32-bit data words. Each frame contains data for three time slices, identified by the capID bits. Data frames may have fill characters between them, but a frame error will be set if fill a character occurs within a frame. Once each link's SERDES is locked, at least one fill character is required for IPM Buffer to frame synchronize, but once synchronized, a string of data frames with no fill character separating them is allowed. It is recommended that a fill character be added between data frames occasionally to allow IPM Buffer to check for synchronization errors. A counter is implemented to flag an error if a fill character is not received for more than approximately 100 contiguous data words. IPM Buffer deserializers accept any 32-bit k character sequence as a fill character, but for deserializer clock correction, the clock correction sequence should be transmitted approximately every 5000 bytes. This allows the deserializer to add or remove clock correction characters as necessary to compensate for small clock rate differences between the transmitter and the receiver. The defined clock correction sequence for IPM Buffer is: #### k28.5 d16.2 k28.5 d5.6. Data in the frame is defined as follows: QIEx Front End QIE pseudo exponential data. CAPID Two bit CAPID number from QIE chip. Mode Two bit Mode identifier from the QIE chip. Defined modes are as follows: 00 Calibration01 Normal 10 Debug/Testing11 RESET Marker Timing Bits Four front end timing bits defined as follows: 31 Proton Injection30 PBar Injection29 Proton Marker28 PBar Marker Error Bits The following front end error bits are defined: 30 - 25 Unused. 24 PLL Lock Fail in Timeslice 2 - 23 PLL Lock Fail in Timeslice 1 - 22 PLL Lock Fail in Timeslice 0 - 21 CAPID error in Timeslice 2 - 20 CAPID error in Timeslice 1 - 19 CAPID error in Timeslice 0 - 18 FIFO Full in Timeslice 2 - 17 FIFO Full in Timeslice 1 - 16 FIFO Full in Timeslice 0 Counter Data 16-bit counter increments on each timeslice. This results in a count value incrementing by three for each data frame. # Memory Data Format Data from the eight input links is combined and stored in main memory in 80 byte frames. Each frame contains data from one timeslice. Memory Data Frame Format | ment y Edite 1 | Temes I officer | |----------------|-----------------| | 63 | 0 | | Header Low | | | Header High | | | Link 0 Data | | | Link 1 Data | | | Link 2 Data | | | Link 3 Data | | | Link 4 Data | | | Link 5 Data | | | Link 6 Data | | | Link 7 Data | | ## Header Low | 63 – 56 | 55 | 53 | 51 | 50 | 49 - 41 | 40 - 32 | |----------------|----------|--------|----|--------------------|-------------------------|--------------------| | | _ | _ | | | | | | | 54 | 52 | | | | | | PLL Lock Error | QIE Mode | Cap ID | 0 | Counter Sync Error | Local Proton
Counter | Local PBar Counter | | 21 24 | 22 16 | 15 0 | 0 0 | |---------|---------|--------|-----| | 31 – 24 | 23 – 10 | 13 – 9 | 8-0 | | FIFO Full Error | Cap ID Error | Local Turn Counter | Local Proton | |-----------------|--------------|--------------------|--------------| | | | | Counter | #### 63 – 56 PLL Lock Error PLL Lock Error bits from FEB Frame Footer. #### 55 – 54 QIE Mode QIE Mode bits from Master Link FEB Frame Footer. #### 53 – 52 Cap ID Cap ID bits from Master Link FEB Frame Footer. #### 50 Counter Sync Error True if the Local Front End Counter (Local Turn Counter + Local Proton Counter) does not match the Frame Front End Counter (Frame Turn Counter + Frame Proton Counter). #### 49 – 41 Local Proton Counter The IPM Buffer module's internal Proton Counter. This counter is preset by the Proton Counter of the FEB on the Master Link during an FEB reset, or any time a Master Link Counter Error is detected. A Master Link Counter Error occurs if the Proton Count received from the Master Link FEB does not agree with the Local Proton Counter. Counter increments by one count on each sample received from the Master Link FEB. Counter wraps to count zero upon receipt of a Proton Marker from the Master Link FEB, or upon count = 317. #### 40 – 32 Local PBar Counter The IPM Buffer module's internal PBar Counter. This counter is preset by the PBar Counter of the FEB on the Master Link during an FEB reset, or any time a Master Link Counter Error is detected. A Master Link Counter Error occurs if the Turn Count received from the Master Link FEB does not agree with the Local Turn Counter. Counter increments by one count on each sample received from the Master Link FEB. Counter wraps to count zero upon receipt of a Proton Marker from the Master Link FEB, or upon count = 317. #### 31 – 24 FIFO Full Error FIFO Full Error Bits from FEB Frame Footer. #### 23 – 16 Cap ID Error Cap ID Error Bits from FEB Frame Footer. #### 15 – 9 Local Turn Counter The IPM Buffer module's internal Turn Counter. This counter is preset by the Turn Counter of the FEB on the Master Link during an FEB reset, or any time a Master Link Counter Error is detected. A Master Link Counter Error occurs if the Turn Count received from the Master Link FEB does not agree with the Local Turn Counter. Counter increments by one count upon receipt of a Proton Marker from the Master Link FEB. Counter resets to zero upon receipt of a Proton Injection or PBar injection flag from the Master Link FEB. ## 8-0 Local Proton Counter Duplicate of above. #### Header High | 63 - 56 | 55 – 48 | 47 – 40 | 39 - 32 | 31 – 24 | 23 – 16 | 15 – 8 | 7 – 0 | |---------|---------|---------|---------|-----------|-----------|--------|--------| | Counter | Frame | QIE | Cap ID | Proton | PBar | Proton | PBar | | Sync | Error | Mode | Sync | Injection | Injection | Marker | Marker | | Error | | Sync | Error | Error | Error | Error | Error | | | | Error | | | | | | Header error bits in eight bit blocks contain one error bit for each link, with the lowest significant bit corresponding to the error occurring in link 0, the next lowest in link 1, etc. Detailed description of the bit functions follow. ## 63 – 56 Counter Sync Error. A high bit indicates that the value in the Turn Counter or the Proton Counter of the FEB on the corresponding link did not agree with the IPM Buffer module's internal Turn and Proton Counters. #### 55-48 Frame Error. A high bit indicates that the IPM buffer has detected a data frame error on the corresponding link. #### 47 – 40 QIE Mode Sync Error. A high bit indicates that the QIE mode does not match the QIE mode of the FEB on the master Link. #### 39 - 32 Cap ID Sync Error. A high bit indicates that the Cap ID does not match the Cap ID of the FEB on the Master Link. #### 31 – 24 Proton Injection Error. A high bit indicates that the Proton Injection bit does not match the Proton Injection bit of the FEB on the Master Link. #### 23 – 16 PBar Injection Error. A high bit indicates that the PBar Injection bit does not match the PBar Injection bit of the FEB on the Master Link. #### 15 – 8 Proton Marker Error. A high bit indicates that the Proton Marker bit does not match the Proton Marker bit of the FEB on the Master Link. #### 7 - 0 PBar Marker Error. A high bit indicates that the PBar Marker bit does not match the PBar Marker bit of the FEB on the Master Link. #### Link x Data QIE Data can be stored in Raw format (exactly as received from the front end board), or converted to an integer value using the conversion lookup table. The conversion lookup table is loaded and enabled through PCI (see: PCI Interface), and when enabled, causes the IPM Buffer to store an eight bit integer value into memory, instead of seven bit pseudo exponential value for each QIE channel. #### Link x Data (RAW) | Ethin i Butta (1411) | | | | | | | | | | |----------------------|------|------|---------|---------|---------|---------|--|--|--| | 63 - 60 | 59 – | 57 – | 55 - 47 | 48 - 42 | 41 - 35 | 34 - 32 | | | | | | 58 | 56 | | | | | | | | | Timing | QIE | Cap | QIE 7 | QIE 6 | QIE 5 | QIE 4 | | | | | _ | Mode | ID | | | | (high) | | | | | 31 - 28 | 27 - 21 | 20 – 14 | 13 – 7 | 6-0 | |---------|---------|---------|--------|-------| | QIE 4 | QIE 3 | QIE 2 | QIE 1 | QIE 0 | | (high) | | | | | #### *Link x Data (Integer Conversion Enabled)* | 63 - 56 | 55 – 48 | 47 – 40 | 39 – 32 | 31 – 24 | 23 – 16 | 15 – 8 | 7 – 0 | |---------|---------|---------|---------|---------|---------|--------|-------| | QIE 7 | QIE 6 | QIE 5 | QIE 4 | QIE 3 | QIE 2 | QIE 1 | QIE 0 | #### Memory Data Frame Format when in Front End Diagnostic Mode | 63 | 0 | |----------------------------------|---| | Header Low | | | Header High | | | Link 0 Data | | | Link 1 Data | | | Link 2 Data | | | Link 3 Data | | | Link 0 RAW Front End Footer Data | | | Link 1 RAW Front End Footer Data | | | Link 2 RAW Front End Footer Data | | | Link 3 RAW Front End Footer Data | | #### Link x RAW Front End Footer Data | 63 - 56 | 55 – 48 | 47 - 40 | 39 - 32 | |-------------------|---------------------
---------------------|---------------------| | Frame Error, Hard | Time Slice 2 Timing | Time Slice 1 Timing | Time Slice 0 Timing | | Trigger and FE Init | Mode and CapID | Mode and CapID | Mode and CapID | |---------------------|----------------|----------------|----------------| | | | | | | 31 - 0 | | |----------------------|--| | RAW Front End Footer | | #### Frame Error, Hard Trigger, and Front End Init | 63 | 62 | 61 | 60 – 56 | |-------|---------|----------|------------------| | Frame | Hard | Front | Unused (0x00000) | | Error | Trigger | End Init | | ## Time Slice x Timing Mode and CapID | 7 | 6 | 5 | 4 | 3 – 2 | 1 – 0 | |--------|----------|--------|--------|-------|-------| | Proton | PBar Inj | Proton | PBar | Mode | CapID | | Inj | | Marker | Marker | | | ## **Interboard Synchronization** The IPM Buffer provides a mechanism for ensuring synchronization between two boards in the same host system. Connector J2 (top of pc board) provides for this function. A 20-pin ribbon cable jumper must be connected between the J2 connectors of the two boards. Once connected, one of the boards is designated the slave in software by setting the Interboard Slave Enable bit in the CSR register. The other board is designated the master by setting the Interboard Master Enable bit in the CSR register. Once properly configured and connected, the master IPM Buffer transmits the Turn Counter value of the event to trigger on to the slave. Both boards then acquire at the specified Turn Counter value. The master also passes the acquisition enable signal to the slave. # PCI Interface CAUTION: The IPM Buffer board supports 3.3-Volt PCI ONLY. The board will physically fit into a 5-Volt PCI slot, but powering a system with an IPM Buffer module in a 5-Volt slot WOULD BE BAD. Fatal damage to the IPM Buffer, the system motherboard, power supply, or all of the above will result if attempted. Note that 3.3 Volt PCI slots can be identified by the location of the key in the slot. 3.3 Volt PCI slots have the key near the back panel of the system, whereas 5 Volt PCI slots have the key nearest the end of the connector that is farthest from the back panel of the system. See figure above. ## The following PCI registers are defined: ## PCI Configuration Space: | Tel Configuration Space. | | | | |--|--|--|--| | Device ID / Vendor ID (9656 10B5) | | | | | Status / Command | | | | | Class Code / Rev ID (068000AD) | | | | | Base Address of Memory access to PLX registers (PCIBAR0) | | | | | Reserved (PCIBAR1) | | | | | Base Address of Memory access to Readout Data Window | | | | | (PCIBAR2 – Memory Space 0) | | | | | Base Address of Memory access to IPM CSR register block | | | | | (PCIBAR3 – Memory Space 1) | | | | | Reserved | | | | | Reserved | | | | | Reserved | | | | | PCI Subsystem ID / PCI Subsystem Vendor ID (24400003) | | | | | Reserved (do not write) | | | | | | | | | ## *Memory Space 1 (Memory Space 1 Base = contents of PCIBAR3):* | Mem1 Base + 00h | Control-Status register | |-----------------|--| | Mem1 Base + 04h | Memory window page register | | Mem1 Base + 08h | Master Link Select Mask / Trigger Mask | | Mem1 Base + 0Ch | Event Data Address Counter register | | Mem1 Base + 10h | SERDES Control 0 | |---------------------|--| | Mem1 Base + 14h | SERDES Control 1 | | Mem1 Base + 18h | | | Mem1 Base + 1Ch | Link Status Register | | | N Turn Count | | Mem1 Base + 20h | Link Error Register 0 | | Mem1 Base + 24h | Link Error Register 1 | | Mem1 Base + 28h | Link Error Register 2 | | Mem1 Base + 2Ch | Link Error Register 3 | | Mem1 Base + 30h | Link Diagnostic Register | | Mem1 Base + 34h | Reserved (DEADBEEF) | | _ | | | Mem1 Base + 3Ch | | | Mem1 Base + 40h | Link Error Register 4 | | Mem1 Base + 44h | Reserved (DEADBEEF) | | _ | | | Mem1 Base + B0h | | | Mem1 Base + B4h | Acquisition Timer Register | | Mem1 Base + B8h | Reserved (DEADBEEF) | | _ | | | Mem1 Base + CCh | | | Mem1 Base + D0h | State Machine Low | | Mem1 Base + D4h | State Machine Mid | | Mem1 Base + D8h | State Machine High | | Mem1 Base + DCh | Reserved (DEADBEEF) | | _ | | | Mem1 Base + ECh | | | Mem1 Base + F0h | Firmware ID code (date in mmddyyyy format) | | Mem1 Base + F4h | FPGA Firmware JTAG TDO bit | | Mem1 Base + F8h | IPM Buffer FIFO Full Error Flags | | Mem1 Base + FCh | Reserved (DEADBEEF) | | Mem1 Base + 100h | Proton Mask Register 0 (proton mask bits 31 to 0) | | Mem1 Base + 104h | Proton Mask Register 1 (proton mask bits 63 to 32) | | Mem1 Base + 108h | Proton Mask Register 2 (proton mask bits 95 to 64) | | Mem1 Base + 10Ch | Proton Mask Register 3 (proton mask bits 127 to 96) | | Mem1 Base + 110h | Proton Mask Register 4 (proton mask bits 159 to 128) | | Mem1 Base + 114h | Proton Mask Register 5 (proton mask bits 191 to 160) | | Mem1 Base + 118h | Proton Mask Register 6 (proton mask bits 223 to 192) | | Mem1 Base + 11Ch | Proton Mask Register 7 (proton mask bits 255 to 224) | | Mem1 Base + 120h | Proton Mask Register 8 (proton mask bits 287 to 256) | | Mem1 Base + 124h | Proton Mask Register 9 (proton mask bits 317 to 288) | | Mem1 Base + 128h | Reserved | | - 13Ch | | | Mem1 Base + 140h | PBar Mask Register 0 (PBar mask bits 31 to 0) | | Mem1 Base + 144h | PBar Mask Register 1 (PBar mask bits 63 to 32) | | Mem1 Base + 148h | PBar Mask Register 2 (PBar mask bits 95 to 64) | | MICHII Dasc T 14011 | 1 Dat Mask Negister 2 (1 Dat Mask tits 75 to 04) | | Mem1 Base + 14Ch | PBar Mask Register 3 (PBar mask bits 127 to 96) | |------------------|--| | Mem1 Base + 150h | PBar Mask Register 4 (PBar mask bits 159 to 128) | | Mem1 Base + 154h | PBar Mask Register 5 (PBar mask bits 191 to 160) | | Mem1 Base + 158h | PBar Mask Register 6 (PBar mask bits 223 to 192) | | Mem1 Base + 15Ch | PBar Mask Register 7 (PBar mask bits 255 to 224) | | Mem1 Base + 160h | PBar Mask Register 8 (PBar mask bits 287 to 256) | | Mem1 Base + 164h | PBar Mask Register 9 (PBar mask bits 317 to 288) | | Mem1 Base + 168h | Reserved | | – 1FCh | | | Mem1 Base + 200h | QIE Conversion Lookup Table | | - Mem1 Base + | | | 3FFh | | Status / CSR Register (offset x00) | 31 – 16 | 15 – 0 | |----------------|---------| | Status (x0000) | Control | | Bit 31 | RO DDR RAM Access Interlock Error (DDR RAM accessed from PCI | |---------------|--| | | during a data acquisition). | | Bit $30 - 28$ | RO Module Status (currently undefined 000). | | Bit 27 | RO IRQ On | | Bit $26 - 16$ | RO Module Status (currently undefined 0000000000). | | Bit 15 | WO Master Reset (Reset all of FPGA including SERDES and link FIFOs) | | Bit 14 | R/W Clear Errors | | Bit 13 | R/W Clear IRQ | | | IRQ Enabled when low. | | Bit 12 | R/W Force IRQ | | | When Bit 13 is low and 12 is high, the PCI Interrupt output is driven true. | | Bit 11 | R/W Clear latched IRQ Status bit. | | Bit 10 | WO Soft Reset (Reset all of FPGA except SERDES and link FIFOs) | | Bit 9 | RO Unused (0). | | Bit 8 | R/W FlushBadAcquisitionEnable. | | | When high, acquisitions with errors are flushed and overwritten without | | | generating and interrupt. | | Bit 7 | R/W Inter-Board Master Enable. | | | When high, board is placed into master mode for interboad | | | Synchronization error checking. In master mode, the board receives the | | | inter-board data and strobe signals. The Acquisition Enable signal is | | | driven. When low, The Acquisition Enable signal is tri-stated. | | Bit 6 | R/W Front End diagnostic mode enabled. When high, raw footer data | | | from the front end modules on links 0 - 3 is written into the memory frame | | | in the place of the data for links $4-7$. In diagnostic mode, data from links | | | 4 – 7 is not available. | | Bit 5 | R/W RAW Mode Enable. When high, enables true RAW mode. Data | | | from front end modules is stored in same format as received. Note that | | | RAW mode is only available when Conversion Enable is not enabled. If | Conversion Enable is true, the RAW Mode Enable bit has no affect. Bit 4 R/W Inter-Board Slave Enable. When high, board is placed into slave mode for interboard synchronization error checking. In slave mode, the board drives the inter-board outputs, and applies its proton counter to them. In slave mode, Data Acquisition begins when the Acquisition Enable input goes true. When the Inter-Board Slave Enable bit is low, the inter-board data and Strobe outputs are tri-stated. Bit 3 R/W NTurn Enable When high, a trigger will cause the number of turns stored in the N Turn Count Register to be stored. Bit 2 R/W Sparsification Enable. When high, Sparsification mode is enabled. Only samples indicated in the Proton or PBar masks will be stored. Bit 1 R/W Conversion Enable. When high, the QIE conversion lookup table is enabled. Raw QIE data is used as an index into the conversion table. The output of the conversion table is stored in memory. When low, raw QIE data is stored. Bit 0 R/W Acquisition Enable. When high, the DAQ state machine controls the DDR memory. Data from the input links is stored. PCI access to the DDR memory is blocked. When low, PCI access of the DDR memory is enabled. Data from the Input links is not stored. Note that this bit is only functional when in master mode. When in slave mode, Acquisition Enable is passed over the interboard link from the Master board. DDR Memory Page Register (offset x04) | 31 - 29 | 28 - 20 | 19 - 0 | |---------|---------|---------------------| | 000 | Page | 0000000000000000000 | Master Link Select Mask / Trigger Mask (offset x08) | 31 – 24 | 23 - 16 | 15 – 4 | 3 - 0 | |---------|--------------------|--------|---------| | x00 | Master Link Select | x000 | Trigger | | | Mask | | Mask | | Bit 31 – 24 | RO Unused (x00) | |-------------
--| | Bit 23 | R/W Select Link 7 as Master Link | | | When high, IPM buffer's front end counter synchronizes itself to the | | | front end counter of this link. Only one link may be selected as master. | | Bit 22 | R/W Select Link 6 as Master Link | | | Similar to bit 23 for Link 6. | | Bit 21 | R/W Select Link 5 as Master Link | | | Similar to bit 23 for Link 5. | | Bit 20 | R/W Select Link 4 as Master Link | | | Similar to bit 23 for Link 4. | | Bit 19 | R/W Select Link 3 as Master Link | Similar to bit 23 for Link 3. Bit 18 R/W Select Link 2 as Master Link Similar to bit 23 for Link 2. Bit 17 R/W Select Link 1 as Master Link Similar to bit 23 for Link 1. Bit 16 R/W Select Link 0 as Master Link Similar to bit 23 for Link 0. Bit 3 R/W Proton Injection Bit When high, acquisition triggers on receipt of a Proton Injection flag from the front end. R/W PBar Injection Bit Bit 2 When High, acquisition triggers on receipt of a PBar Injection flag from the front end. Bit 1 R/W Proton Marker Bit When High, acquisition triggers on receipt of a Proton Marker flag from the front end. Bit 0 R/W PBar Marker Bit When High, acquisition triggers on receipt of a PBar Marker flag from the front end. DDR Address Counter Register (offset x0C) | 31 - 29 | 19 - 0 | |---------|-----------------| | Unused | Address Counter | Bit 31 – 29 RO Unused (000). Bit 19 – 0 R/W Address Counter Register. When written, causes DAQ to begin writing at this address when acquisition is enabled. When read, shows the next address to be written by the DAQ state machine. Note that since DAQ state machine always writes 64-bit words, low three bits are always zero. #### SERDES Control 0 (offset x10) | 31 – 24 | 23 – 16 | 15 – 8 | 7 – 0 | |-----------|-----------|---------|---------| | PowerDown | TXInhibit | RXReset | TXReset | Bit 31 - 24 R/W Power Down. When high, powers off corresponding SERDES. Bit 23 - 16 R/W TX Inhibit. When high, corresponding SERDES transmit is disabled. Bit 15 - 8 R/W RX Reset. When high, corresponding SERDES receiver is in reset. Bit 7 - 0 R/W TX Reset. When high, corresponding SERDES transmitter is in reset. #### SERDES Control 1 (offset x14) | 31 – 16 | 15 – 8 | 7 – 0 | |---------|--------|-------| #### Bit 31 - 16 R/W SERDES loopback control. Note that each SERDES uses two bits for loopback control. Bits 17 and 16 correspond to SERDES 0 and so on. The truth table for loopback control is; 00 = Normal non-loopback mode, 01 = Parallel loopback mode, 10 = Serial loopback mode. Mode 11 is undefinded. #### Bit 15 - 8 R/W TX Pattern Enable. When high SERDES Transmit pattern generator is enabled for corresponding link. Bit 7 - 0 R/W Link Enable. When high, corresponding link is enabled. *Link Status Register (offset x18)* | Ziiii Steitie 112 Stett (5) Set 112) | | | | | |--------------------------------------|---------|--------------------|--------------|---------------| | 31 - 26 | 25 - 24 | 23 – 16 | 15 – 8 | 7 - 0 | | 000000 | Paroli | Link Data Activity | Frame Locked | SERDES Locked | #### Bit 31 – 26 RO Unused (000000). #### Bit 25 RO Paroli Power bad latched. Set by Paroli optical power on link 0 falling below minimum required for reliable data transmission. Cleared by Clear Errors bit, Reset bit, or hard Reset. Bit 24 Paroli Power good. Not latched. High if Paroli link 0 optical power is above the minimum threshold required for reliable data transmission. Low if not. Bit 23 – 16 Link Data Activity. High when at least one frame of data is in the link FIFO. Data is written into the link FIFO by the link deserializer state machine. Indicates that the link deserializer state machine is able to decode recognizable data frames from the connected front end board. Link Data Activity bits are not latched or qualified with Acquisition Enable. #### Bit 15 - 8 Frame Locked. When high, IPM data frames are being received and the IPM buffer input state machine for the corresponding link recognizes the frame as a valid IPM frame. Frame Locked bits are not qualified with Acquisition Enable. Bit 7 - 0 SERDES Locked. When high the input SERDES for the corresponding link is locked onto the 8b-10b data received from the front end. Data does not have to be valid IPM data for SERDES lock to be true. SERDES Locked bits are not qualified with Acquisition Enable. N Turn Count Register (offset x1C) | 31 – 16 | 15 – 0 | |---------|--------------| | Unused | N Turn Count | # Bit 15 – 0 R/W N Turn Count Register. Sets the number of turns stored after a trigger. *Link Error 0 Register (offset x20)* | | | , , , | | |-------------------|----------|-------------|------------------| | 31 – 24 | 23 – 16 | 15 – 8 | 7 – 0 | | Illegal Character | Reserved | Frame Error | SERDESLock Error | | latched | | Latched | Latched | #### Bit 31 – 24 RO Illegal Character Latched. Set high for corresponding link when SERDES has received an illegal character. An illegal character is a character that is not defined in the 8b-10b specification. Cleared by Clear Errors bit, Reset bit, or hard reset. Bit 23 - 16 Reserved. Always 0x00. Bit 15 - 8 RO Frame Error Latched. Set high for corresponding link when the link control state machine detects an IPM frame error. IPM frames are defined as seven consecutive 32-bit data words. One or more comma characters between frames is optional as long as at least one comma is received at least every 100 words. Bit 7 – 0 RO SERDES Lock Error Latched. Set high for corresponding link when the SERDES looses lock. Cleared by Clear Errors bit, Reset bit, or hard reset. Link Error 1 Register (offset x24) | 31 – 24 | 23 – 16 | 15 – 8 | 7 – 0 | |---------------------|-------------------|----------------|------------------| | Proton Marker Error | PBar Marker Error | QIE Mode Error | Link Frame Error | | Latched | Latched | Latched | | #### Bit 31 – 24 RO Proton Marker Error Latched. Set high for corresponding link when the Proton Marker bit does not agree with the Proton Marker for the Master Link. Cleared by Clear Errors bit, Reset bit, or hard reset. Bits are qualified with Acquisition Enable. Bit 23 – 16 RO PBar Marker Error Latched. Set high for corresponding link when PBar Marker bit does not agree with the PBar Marker for the Master Link. Cleared by Clear Errors bit, Reset bit, or hard reset. Bits are qualified with Acquisition Enable. Bit 15 – 8 RO QIE Mode Error Latched. Set high for corresponding link when QIE Mode bit does not agree with the QIE Mode of the Master Link. Cleared by Clear Errors bit, Reset bit, or hard reset. Bits are qualified with Acquisition Enable. Bit 7 - 0 RO Link Frame Error. High for corresponding link when the link control state machine has detected an IPM frame error. A frame error can be caused by an invalid front end frame (seven 32-bit words separated by optional comma characters), a loss of SERDES lock during a frame, or an illegal character received. Bits are qualified with Acquisition Enable. *Link Error 2 Register (offset x28)* | | | , ()) | | |-----------------|--------------|------------------|----------------------| | 31 – 24 | 23 – 16 | 15 – 8 | 7 – 0 | | FIFO Full Error | Cap ID Error | Proton Injection | PBar Injection Error | | Latched | Latched | Error Latched | Latched | #### Bit 31 – 24 RO FIFO Full Error Latched. Set when the corresponding Front End Board reports a FIFO error for any of the three time slices in a frame. Bits are qualified with Acquisition Enable. Cleared by Clear Errors bit, Reset bit, or hard reset. Bit 23 – 16 RO Cap ID Error Latched. Set for corresponding link when Front End Board reports a CAP ID Error for any of the three time slices in a frame. Bits are qualified with Acquisition Enable. Cleared by Clear Errors bit, Reset bit, or hard reset. Bit 15 – 8 RO Proton Injection Error latched. Set for corresponding link when Proton Injection bit does not agree with the Proton Injection bit for the Master Link. Bits are qualified with Acquisition Enable. Cleared by Clear Errors bit, Reset bit, or hard reset. Bit 7 – 0 RO PBar Injection Error Latched. Set for corresponding link when PBar bit does not agree with the PBar Injection bit for the Master Link. Bits are qualified with Acquisition Enable. Cleared by Clear Errors bit, Reset bit, or hard reset. *Link Error 3 Register (offset x2C)* | 31 – 24 | 23 – 16 | 15 – 8 | 7 – 0 | |-------------------|----------------|---------------|----------------| | Cap ID Sync Error | QIE Mode Error | Counter Error | PLL Lock Error | | Latched | Latched | Latched | Latched | #### Bit 31 – 24 RO Cap ID Sync Error Latched. Set for corresponding link when Cap ID value does not match value in the Master Link. Bits are qualified with Acquisition Enable. Latched errors are cleared by the Clear Errors bit, Reset bit, or a hard reset. Bit 23 – 16 RO QIE Mode Error Latched. Set for corresponding link when the QIE Mode value does not match the QIE Mode value in the Master Link. Bits are qualified with Acquisition Enable. Latched errors are cleared by the Clear Errors bit, Reset bit or a hard reset. Bit 15 - 8 RO Counter Error. Set for corresponding link when front end counter value does not match IPM Buffer counter value. Bits are qualified with Acquisition Enable. Cleared by Clear Errors bit, Reset bit, or hard reset. Bit 7 – 0 RO PLL Lock Error Latched. Set for corresponding link when the Front End Board reports a PLL Lock Error for any of the three time slices in a frame. Bits are qualified by *Link Diagnostic (Force Error) Register (offset x30)* | 31 – 24 | 23 – 16 | 15 – 11 | 10 - 0 | |---------|-------------|---------|------------------| | Unused | Link Select | Unused | Force Error Mask | - Bit 31 24 RO Unused (x00). - Bit 23 16 R/W Link Select. When high, corresponding link will generate error selected in Force Error Mask. - Bit 15 11 RO Unused (00000). - Bit 10-0 R/W Force Error Mask. | Bit 10 | Force CAP ID Sync Error. | |--------|--------------------------| | Bit 9 | Force Counter
Error. | - Bit 8 Force PLL Lock Error. Bit 7 Force FIFO Full Error. - Bit 6 Force CAP ID Error. - Bit 5 Force Proton Injection Error. - Bit 4 Force PBar Injection Error. - Bit 3 Force Proton Marker Error. - Bit 2 Force PBar Marker Error. - Bit 1 Force QIE Mode Error. - Bit 0 Force Frame Error. *Link Error 4 Register (offset x40)* | | | 7 | | |-------------------|----------|----------------|------------------| | 31 – 24 | 23 – 16 | 15 – 8 | 7 – 0 | | Illegal Character | Reserved | Frame Error | SERDESLock Error | | latched During | | Latched During | Latched During | | Acquire | | Acquire | Acquire | Bit 31 – 24 RO Illegal Character Latched During Acquire. Set high for corresponding link when SERDES has received an illegal character during an acquisition. Cleared by Clear Errors bit, Reset bit, or hard reset. - Bit 23 16 Reserved. - Always 0x00. - Bit 15 8 RO Frame Error Latched During Acquire. Set high for corresponding link when the link control state machine detects an IPM frame error during an acquisition. IPM frames are defined as seven consecutive 32-bit data words. One or more comma characters between frames is optional as long as at least one comma is received at least every 100 words. Bit 7 – 0 RO SERDES Lock Error Latched During Acquire. Set high for corresponding link when the SERDES looses lock during an acquisition. Cleared by Clear Errors bit, Reset bit, or hard reset. 31 - 0 ## Acquisition Timeout Register Bit 31 – 0 R/W Value of Acquisition Timeout Register in (1.88MHz) clock ticks. Value in this register is transferred to the Acquisition Enable Timer when the Acquisition Enable bit is set. As long as Acquisition Enable is true, the Acquisition Enable Timer decrements by one count on a 1.88MHz clock. If Acquisition Enable is still true upon the Acquisition Enable Timeout Counter decrementing to zero, all links on both master and slave boards are forced unlocked, the data FIFOs are flushed, and the timer presets. This register defaults to a value of 0x027B0000 (about 5 seconds), but can be changed to any 32-bit value. Setting this value to zero (0x00000000) disables the timer. ## State Machine Low (offset xD0) | 31 – 24 | 23 – 16 | 15 – 8 | 7 – 0 | |-------------------|----------------|---------------|---------------| | Event DDR Address | Event DDR Data | PCI DDR Cache | PCI DDR State | - Bit 31 24 RO Instantaneous value of the Event DDR Address State Machine. - Bit 23 16 RO Instantaneous value of the Event DDR Data State Machine. - Bit 15 8 RO Instantaneous value of the PCI DDR Cache Controller State Machine. - Bit 7 0 RO Instantaneous value of the PCI DDR State Machine. #### *State Machine Mid (offset xD4)* | 31 – 10 | 1 – 10 9 – 8 | | 3-0 | | |----------------|---------------|----------------|----------------|--| | Unused (zeros) | DDR Controler | DDR Controller | DDR Controller | | | | Write State | Read State | State | | - Bit 9 8 RO Instantaneous value of the DDR Controller Write State Machine. - Bit 7 4 RO Instantaneous value of the DDR Controller Read State Machine. - Bit 3-0 RO Instantaneous value of the DDR Controller State Machine. #### State Machine High (offset xD8) | | | | | 0 \ 00 | | | | |---------|---------|---------|---------|---------|--------|--------|--------| | 31 - 28 | 27 - 24 | 23 - 20 | 19 – 16 | 15 – 12 | 11 – 8 | 7 – 4 | 3 – 0 | | Link 7 | Link 6 | Link 5 | Link 4 | Link 3 | Link 2 | Link 1 | Link 0 | - Bit 31 28 RO Instantaneous value of the Link 7 state machine. - Bit 27 24 RO Instantaneous value of the Link 6 state machine. - Bit 23 20 RO Instantaneous value of the Link 5 state machine. - Bit 19 16 RO Instantaneous value of the Link 4 state machine. - Bit 15 12 RO Instantaneous value of the Link 3 state machine. - Bit 11 8 RO Instantaneous value of the Link 2 state machine. - Bit 7 4 RO Instantaneous value of the Link 1 state machine. - Bit 3 0 RO Instantaneous value of the Link 0 state machine. #### *Firmware ID (offset xF0)* | 31 – 24 | 23 – 16 | 15 – 0 | |---------|---------|--------| | Month | Day | Year | Bit 31-24 RO Firmware revision month in BCD. Bit 23-16 RO Firmware revision day in BCD. Bit 15-0 RO Firmware revision year in BCD. ## FPGA Firmware JTAG TDO bit (offset xF4) | 31 – 1 | 0 | |--------------------|-----| | Unused (all zeros) | TDO | Bit 31 - 1 RO Unused (all zeros) Bit 31 - 29 Bit 0 RO FPGA Firmware JTAG TDO bit #### IPM Buffer FIFO Full Error Flags (offset xF8) | 31 - 29 | 28 - 0 | |---------|-----------------------| | 000 | FIFO Full Error Flags | | | | Bit 28 RO DDR Output (to external memory) Data FIFO Full Error Bit 27 RO DDR Command FIFO Full Error Bit 26 RO DDR Input (from external memory) Data FIFO Full Error Bit 25 RO PCI to DDR Data FIFO Full Error RO Unused (zeros) Bit 24 RO PCI to DDR Address FIFO Full Error Bit 23 – 16 RO Link Formatted Data FIFO Full Error Bit 15 – 8 RO Link Formatted Footer FIFO Full Error Bit 7 – 0 RO Link RAW Data FIFO Full Error FIFO Full Error flags should not set under normal running conditions and when true indicate a firmware flaw in the IPM Buffer. Errors are set when the error condition occurs, and are cleared by setting the Clear Errors Bit in CSR0, or by Reset. ## *Proton Sparsification Mask Registers (offset x100 – x124)* | | i ototi spensijteation naak Hegisters (ojjset mios | W121) | |--------------------|--|-------| | 31 – 0 | | | | Proton Sparsificat | tion Mask | | #### Bit 31 - 0 R/W Proton Sparsification Mask. When high, corresponding sample will be stored in memory on each turn if Sparsification Enable bit is set. If Sparsification Enable bit is cleared, then Proton Mask is not used. Note: Register at offset x40 contains mask bits for samples 0 through 31. Register at offset x44 contains mask bits for samples 63 through 32, etc. #### PBar Sparsification Mask Registers (offset x140 - x164) | 31 – 0 | | | |----------------------------|--|--| | Proton Sparsification Mask | | | #### Bit 31 - 0 R/W PBar Sparsification Mask. When high, corresponding sample will be stored in memory on each turn if Sparsification Enable bit is set. If Sparsification Enable bit is cleared, then PBar Mask is not used. Note: Register at offset x80 contains mask bits for samples 0 through 31. Register at offset x84 contains mask bits for samples 63 through 32, etc. *QIE Conversion Lookup Table (offset x200 – x3FF)* | ~ | (33 / | |------------|------------------| | 31 - 8 | 7 - 0 | | Don't care | Conversion Value | #### Bit 31 - 9 RO Unused (zeros). Bit 7 - 0 R/W Conversion table Value. Value written will be stored in DDR memory using the QIE raw data as an entry offset from the table base address. Table is read-only when Acquisition Enable bit is high. Memory Space 0: | Mem0 Base + 00000000h | Event Memory Window (1 Mbyte) | |-----------------------|-------------------------------| | | | | Mem0 Base + 000FFFFFh | | # In-System FPGA Programming The Xilinx FPGA and its associated configuration PROMs can be programmed using the Xilinx software and a Xilinx JTAG device programming cable. The PROMs can also be programmed through the PCI interface without removing the IPM Buffer board from the host system. This is done by first using the Xilinx Impact software to generate a .svf formatted file. This file is then converted into a .xsvf formatted file using the SVF2XSVF502.EXE program: c:\> svf2xsvf02 -r 0 -i ipmfpga.svf -o ipmfpga.xsvf The IPM Buffer control program can then be used to program the FPGA flash memory on the buffer board. Once programmed, the buffer board host system must be power cycled for the changes to take affect. #### In System FPGA Programming technical details In system programming of the FPGA flash memories is done by accessing the JTAG signals on the board through the PCI interface. When in-system programming is enabled, the external JTAG connector on the board is disabled. Enabling in-system programming is done by driving the USERo pin on the PLX PCI interface chip low. Once low, the JTAG pins can be accessed through the PCI interface. Details of programming can be found in Xilinx XAPP058: http://www.xilinx.com. Once programming is complete, the USERo output should be returned to a high state. In-system pin mapping is as follows. Refer to the PLXPCI9656BA user manual for register locations: USERo output enable: PLX CNTRL(19) USERo output: PLX CNTRL(16) JTAG_TCLK: PLX CNTRL(24) JTAG_TMS: PLX CNTRL(25) JTAG_TDI: PLX CNTRL(26) JTAG_TDO: CSRBase + xF4(0) Programming sequence: Set USERo output to a known state: $CNTRL(16) \le 0x1$ Enable USERo output: $CNTRL(19) \le 0x1$ Set USERo output to enable in-system programming: $CNTRL(16) \le 0x0$ Once enabled, the JTAG signals on the board can be accessed via register bits. By sequencing the JTAG signals as described in XAPP058, the two FPGA flash memories can be programmed. Upon completion of the programming operation, disable in-system programming: $CNTRL(16) \le 0x1$ After the flash memories have been programmed, the IPM Buffer board and its host system must be power cycled for the changes to take affect. Simply rebooting the board will not cause the FPGA to reload its program. If in-system programming is interrupted or fails for some reason, it is possible to leave the flash memories with corrupted or incomplete data in them. If this happens, the IPM Buffer board will remain functional with the previous FPGA code running, but once the module is power cycled, it will go into an unusable state. To reflash an IPM Buffer in this state, DIP Switch SW-1(3) must be set to diagnostic mode (off) and the flash memories programmed using the Xilinx cable. Using the IPM BUF Control program to re-program the IPM Buffer FPGA The IPMBUF Control program supports in-system programming of the IPM Buffer module. To program a buffer board, select the JTAG tab, browse to the desired .xsvf data file, and press the "program" button. Once programming is complete, power cycle the host system when
prompted. Creating an in-system programming FPGA data file The data file required by the IPMBUF Control program is in the XSVF format. To create this file, the Xilinx Impact software must first create .MCS files. Once a successful Place and Route is complete, the MCS files can be created using Impact as follows. - 1) Start Impact and select "Prepare Configuration File" from the "Operation Mode Selection" dialog. - 2) Select "PROM File" from the "Prepare Configuration Files" dialog. - 3) At the "Prepare PROM Files" dialog, select "Parallel PROM", and enter "ipmfpga" (no quotes) in the "PROM File name" box. - 4) Select "512K" for the "Parallel PROM Density", and press the "Add" button twice to add two devices. - 5) Press "Next" at the summary dialog, and press "Add File..." at the "Add Device File" dialog. - 6) Browse to the "ipmfpga.bit" file and select it. - 7) Select "No" to add another design file. - 8) Press "finish", and "Yes" to generate the file now. - 9) Two new files will be created. ipmfpga_0.mcs, and ipmfpga_1.mcs. Close Impact. To create the .XSVF file from the .MCS files, continue. - 1) Start Impact. Select "Mode" from the pull-down bar and select "File Mode". - 2) Select the "SVF-STAPL-XSVF" tab. - 3) Right-click in the upper pane and select "add Xilinx device". - 4) When prompted, select "Create" and "XSVF". - 5) Enter the .xsvf file name: ipmfpga.xsvf, and press "Save". Press "OK" to start adding devices. - 6) Browse to and add the ipmfpga_0.mcs file. Select "xc18v04_vq44" for the part name and press "OK". - 7) Right-click in the upper pane and select: "Add Xilinx Device". Select "ipmfpga_1.mcs. Select "xc18v04_vq44" for the part name and press "OK". - 8) Right-click on the first Xilinx chip shown (labeled: ipmfpga_0.mcs) and select "program". - 9) Make sure "Erase Before Programming", "Verify" and "Parallel Mode" are checked. Make sure "Load FPGA" is not checked. Press "OK". - 10) Repeat Steps 8 and 9 for the second Xilinx chip (labeled: ipmfpga_1.mcs). - 11) Select "Output" from the pull-down menu, and select "XSVF" file and "Stop Writing to XSVF File". - 12) Close Impact. ## **DIP Switch Settings** The IPM Buffer module is equipped with an eight-switch DIP switch to allow enabling of diagnostic features. These switches do not need to be changed for normal operation of the module. Note the the switches are number 1 to 8 beginning at pin 1 of SW1. DIP Switch SW-1 switches are defined as follows: | SW1 | Reserved (off) | |-----|--| | SW2 | Reserved (off) | | SW3 | IPM Buffer diagnostic/recovery mode enable | | SW4 | Reserved (off) | | SW5 | Reserved (off) | | SW6 | Reserved (off) | | SW7 | Reserved (off) | | SW8 | Diagnostic Boundary Scan Enable | | SW1-2 | Reserved. Must be set to the Off position. | |-------|--| | SW3 | When set to On, the Buffer module is in normal mode. The J3 JTAG | | | port is connected to the two FPGA Flash memories only (U8 and U9). | | | When set to Off, the Buffer module is in diagnostic mode. The J3 | | | JTAG port daisy chains the two FPGA Flash memories, the FPGA, | | | and the PLX PCI Interface chip in the JTAG chain. In-system access | | | | to the JTAG port is disabled, and the J3 connector is forced enabled. SW4 – 7 Reserved. Must be set to the Off position. SW8 Diagnostic Boundary Scan Enable. When On, the IPM Buffer module is in boundary scan diagnostic mode, and the module will not respond to PCI accesses. When Off, boundary scan testing of the module is disabled, and normal operation is enabled. #### **Indicator LEDs** The rear panel of the IPM Buffer contains five multi-color LEDs. These LEDs are labeled D9, D10, D11, D15, and D16 with D9 being the top-most LED. There are also five more multi-color LEDs on the board that are visible only when looking inside the host system. These are labeled D1 through D5 with D1 nearest the rear panel of the host system. The function of the LEDs is as follows: | D1 | FPGA PCI access | |-----|--| | D2 | DDR Memory Activity | | D3 | Reserved | | D4 | SERDES Channel 0 through 3 data activity | | D5 | SERDES Channel 4 through 7 data activity | | D9 | Paroli Channel 1 Power Good | | D10 | SERDES Channel 0 through 3 locked status | | D11 | SERDES Channel 4 through 7 locked status | |-----|---| | D15 | Link Channel 0 through 3 data frame lock status | | D16 | Link Channel 4 through 7 data frame lock status | - D1 FPGA PCI Access. LED will light blue when the FPGA is being accessed through the PCI interface. Note that registers accessed on the PLX PCI interface chip will not cause D1 to light. - D2 DDR Memory Activity. D2 will light Green when the DDR memory is being read or written. - D3 Reserved. Always dark. - D4 SERDES Channel 0 through 3 data activity. D4 lights blue when recognizable data is seen on any of channels 0 through 3. D4 lights red if data errors are seen on any of channels 0 through 3. - D5 SERDES Channel 4 through 7 data activity. D4 lights blue when recognizable data is seen on any of channels 4 through 7. D4 lights red if data errors are seen on any of channels 4 through 7. - D9 Paroli Channel 1 Power Good. Lights blue if the light power detected on channel zero of the Paroli optical receiver is good. - D10 SERDES Channel 0 through 3 locked status. Lights green if the SERDES PLLs are locked on channels 0 through 3. Lights red if none of the PLLs on channels 0 through 3 are locked, and lights orange if at lease one, but not all four channels are locked. - D11 SERDES Channel 4 through 7 locked status. Lights green if the SERDES PLLs are locked on channels 4 through 7. Lights red if none of the PLLs on channels 4 through 7 are locked, and lights orange if at lease one, but not all four channels are locked. - D15 Link Channel 0 through 3 data frame lock status. Lights green if the IPM Buffer receive logic recognizes the data frames coming on all four of channels 0 through 3. Lights red if none of these four channels have recognizable data, and lights orange if at least one, but not all of these four channels have recognizable data. - D16 Link Channel 4 through 7 data frame lock status. Lights green if the IPM Buffer receive logic recognizes the data frames coming on all four of channels 4 through 7. Lights red if none of these four channels have recognizable data, and lights orange if at least one, but not all of these four channels have recognizable data. # Initial Board Configuration Upon first powering up a newly assembled IPM Buffer board, the following steps should be taken: - 1. With DDR memory not installed, set DIP switches to switch 3 on and all others off. - 2. Ohm all power supplies to ground to verify that no power planes are shorted to ground. - 3. Insert board into 3.3 Volt PCI slot and turn on power. - 4. Verify all voltages. Note that VREF_1.25V will read high until Xilinx is programmed. - 5. Connect Xilinx programming cable to J4 and program the CPLD. - 6. Turn off power and set DIP switches to switch 8 on and all others off. - 7. Install boundary scan SODIMM and connect boundary scan JTAG connector to 13. - 8. Install boundary scan jumpers at J1 and J2. Note that the empty pins on the J1 connector face the pin 1 end of the connector. - 9. Connect boundary scan controller to the network and turn it on. - 10. Turn on power to the IPM Buffer host system, and start "Scanplus Runner". - 11. Load and run test: IPM_interconnect_withU5.tsp. If test fails view log and debug problem. - 12. Turn off power and remove boundary scan connections. - 13. Set DIP switch 3 to on and all others off. - 14. Turn on power and connect Xilinx programming cable to J3. - 15. Using Impact, program the two Xilinx PROMs with the current FPGA microcode. - 16. Run PLXMon and program the PLX's serial EPROM using the utility included in PLXMon. Use file: eedata8.eep. - 17. Reboot system and verify that IPM Buffer board functions correctly. ## **Power Requirements** Xilinx X2VP20 5.5 Watts Infineon V23832-R 1.3 Watts Infineon HYS64D64020GDL-7-A, 5 Watts (x 2) PLX PCI9656BA 830 mW Total estimated maximum power requirements: 19 Watts.